

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 869-871

4'C-Ethynyl-thymidine acts as a chain terminator during DNA-synthesis catalyzed by HIV-1 reverse transcriptase

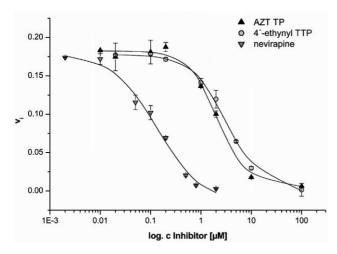
Daniel Summerer and Andreas Marx*

Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
Received 18 October 2004; revised 16 December 2004; accepted 23 December 2004
Available online 19 January 2005

Abstract—Recently, 4'C-ethynyl nucleoside analogues have been identified as highly potent agents against HIV-1, including several multidrug-resistant strains. In contrast to most known nucleoside inhibitors 4'C-ethynyl nucleoside analogues possess a 3'-hydroxyl function. Here we show that the 5'O-triphosphate of 4'C-ethynyl thymidine gets readily incorporated into a nascent DNA strand by HIV-1 reverse transcriptase and significantly inhibits further post-incorporation chain extension by the enzyme. © 2005 Elsevier Ltd. All rights reserved.

Most known nucleoside reverse transcriptase inhibitors (NRTI) like 3'C-azido-3'-deoxythymidine (AZT) are first phosphorylated by cellular kinases to yield the respective 5'O-triphosphates. These activated nucleotides bind competitively to the HIV-1 reverse transcriptase active site and cause chain termination after incorporation into the nascent DNA strand due to a lack of a 3'-hydroxyl function.1 Recently, 4'C-ethynyl nucleoside analogues have been identified as potent agents against HIV-1, including several multidrug-resistant strains.^{2–5} Particularly, this new class of NRTI exhibits potent activity against several multidrug-resistant (MDR) HIV-1 strains that represent a severe restriction to therapy. In contrast to common NRTIs, 4'C-ethynyl nucleoside analogues possess a 3'-hydroxyl group. However, the exact mode of action of these analogues is still unclear. It has been speculated that the mechanism of inhibition of HIV-1 reverse transcriptase (RT) is similar to that of AZT.⁵ Thus, 5'O-triphosphate analogues generated by cellular kinases are thought to get incorporated into a nascent DNA strand by HIV-1 RT, which in turn results in termination of further chain extension despite the presence of a free 3'-hydroxyl group. However, hitherto no studies with a respective 4'C-ethynyl nucleoside-5'O-triphosphate have been described that indeed show such kind of mechanism of action. Thus, we set out to synthesize a 4'C-ethynyl nucleoside-5'O-triphosphate in order to evaluate its

action on HIV-1 RT in vitro. Here we describe comparative studies of 4'C-ethynyl thymidine-5'O-triphosphate with the respective AZT derivative that unambiguously show that 4'C-ethynyl thymidine acts as a chain terminating nucleoside after incorporation into DNA by HIV-1 RT.


First we synthesized 4'C-ethynyl thymidine 1 following a described route.² 1 was subsequently converted to the respective 5'O-triphosphate 2 (Scheme 1) using a multistep one-pot reaction sequence.⁶

To evaluate the potential of **2** to act as an inhibitor of HIV-1 RT promoted DNA synthesis we used an assay format recently developed to measure DNA polymerase activity in real time. This assay format a fluorescence increase is generated by HIV-1 RT promoted DNA synthesis that results in opening of a template containing a molecular beacon construct. By time-resolved observation of fluorescence increase, reaction velocities can be

Scheme 1. Reagents: (i) POCl₃, 1,8-bis-(dimethylamino)-naphthalene, then (*n*Bu₃NH)₂H₂P₂O₇, *n*-Bu₃N, DMF, then 0.1 M aqueous (Et₃NH)HCO₃, 9%.

Keywords: HIV; Nucleotides; DNA polymerase.

^{*}Corresponding author. Tel.: +49 7531 885139; fax: +49 7531 885140; e-mail: andreas.marx@uni-konstanz.de

Figure 1. Inhibition profiles of HIV-1 RT inhibitors. Data for nevirapine and AZT TP was from Ref. 7. V_1 = fluorescence [au]/min.

deduced. When testing 2 we observed decreasing activity with increasing concentrations of the analogue. The results obtained for 2 were compared to those derived from known HIV-1 RT inhibitors that is AZT TP and nevirapine (Fig. 1). Figure 1 shows that the IC₅₀-value of 2 (3.28 \pm 0.21 $\mu M)$ is well in the range of that of AZT TP (2.10 \pm 0.22 $\mu M)$. These experiments clearly indicate that 2 is able to inhibit DNA synthesis catalyzed by HIV-1 RT.

To gain insights into the mechanism of action of 2 on HIV-1 RT we performed primer extension reactions using a radioactively labeled primer strand, subsequent analysis by high-resolution denaturating PAGE and autoradiography. We designed a primer template complex in a way that after extension of the primer strand by four nucleotides a single dA-moiety in the template at position 25 calls for incorporation of a thymidine analogue by HIV-1 RT (Fig. 2A). In a first set of experiments we performed primer extension reactions using dATP, dCTP, dGTP, and 2 at varied concentrations. For comparison we performed reactions under the same conditions using AZT TP instead of 2 (Fig. 2B). When neither 2 nor AZT TP were present the reactions arrest after yielding a 24nt long reaction product due to the absence of any thymidine analogue (Fig. 2B, lanes 1). With increasing amounts of 2 or AZT TP 25nt long reaction products were detected (Fig. 2B, lanes 2-6). However, no further reaction occurs after incorporation of a 4'C-ethynyl thymidine under the applied condition. This is in particular interesting since a free 3'-hydroxyl function at the 3'-primer terminus is present that in principle should be available for further chain extension. Nevertheless, further chain extension is blocked by addition of a 4'C-ethynyl group in comparison to an unmodified DNA primer strand. Thus, the chain terminating action of 2 on HIV-1 RT catalyzed DNA synthesis resembles the action of AZT TP, even both molecules differ in respect to the presence of a free 3'-hydroxyl group.

These results are similar to those obtained with other known 4'C-modified nucleoside-5'O-triphosphates.

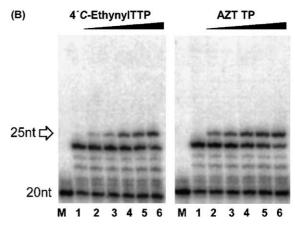
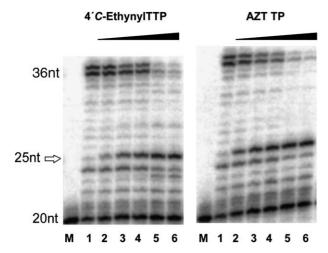



Figure 2. Insertion catalyzed by HIV-1 RT of 4'C-ethynyl TTP 2 in comparison to AZT TP. (A) Primer template complex sequences employed in this study. (B) Insertion of 2 and AZT TP. Conditions: primer template complex (120 nM), HIV-1 RT (8.6 nM), 37 °C, 5 min in 50 mM Tris–HCl pH 8.0, 10 mM MgCl, and 50 mM KCl and 10 μ M each of dGTP, dATP, dCTP. Analysis was performed by 14% denaturating PAGE and subsequent phosphorimager analysis. M: Marker (primer template complex), lane 1: no TTP analogue, 2: 0.05 μ M, 3: 0.1 μ M, 4: 0.5 μ M, 5: 1 μ M, 6: 5 μ M either 2 or AZT TP as indicated in the figure.

4'C-azido-,⁸ 4'C-acyl-,^{9,10} and 4'C-alkyl-thymidine-5'O-triphosphates^{11–13} have been shown to exert strong blockage of post-incorporation chain extension by various DNA polymerases including HIV-1 RT. This feature is presumably caused through unfavorable interaction of the added 4'C-group with functionally important HIV-1 RT motifs such as the so called 'primer grip', which contacts the primer 3'-terminus. ^{14–16} Thus, presence of the additional bulk hampers the formation of productive enzyme substrate complexes resulting in blockage of further chain extension.

Next, we investigated whether 2 is able to compete with incorporation with unmodified TTP by HIV-1 RT. As seen above, incorporation of a 4'C-ethynyl thymidine moiety blocks further HIV-1 RT promoted DNA synthesis. Thus, incorporation of 2 in the presence of natural TTP should result in the accumulation of 25nt long reaction products if 2 is indeed a substrate for the enzyme under these conditions. In the absence of any thymidine analogue 2 or AZT TP and in the presence of TTP full length reaction product formation was observed (Fig. 3, lanes 1).

With increasing amounts of **2** accumulation of a 25nt long reaction product was observed accompanied by a decreasing amount of reaction products longer than 25nt (Fig. 3, lanes 2–6). Similar observations were made when AZT TP was used instead of **2**. These results indicate that **2** is a suitable substrate for incorporation into a growing DNA strand by HIV-1 RT even in the presence of unmodified TTP. Incorporation of a 4'*C*-ethynyl thymidine moiety results in blockage of further chain

Figure 3. Insertion catalyzed by HIV-1 RT of 4′C-ethynyl TTP **2** in comparison to AZT TP in the presence of TTP. Conditions as described in Figure 2 including 10 μ M of TTP. M: Marker (primer template complex), lane 1: neither of **2** and AZT TP, 2: 1 μ M, 3: 5 μ M, 4: 10 μ M, 5: 50 μ M, 6: 100 μ M either **2** or AZT TP as indicated in the figure.

extension by HIV-1 RT and leads to post-incorporation chain termination.

Our experiments unambiguously show for the first time that the 5'O-triphosphate of 4'C-ethynyl thymidine 1, a member of a family of promising antiviral nucleoside derivatives, is an inhibitor of HIV-1 RT catalyzed DNA synthesis and gets readily incorporated by the enzyme into a growing DNA strand. Interestingly, after incorporation of a 4'C-ethynyl thymidine moiety DNA synthesis promoted by HIV-1 RT arrests despite the presence of a free 3'-hydroxyl group at the primer terminus, which in principle should allow proceeding DNA synthesis. Furthermore, our experiments indicate that 2 can compete with TTP as a substrate for HIV-1 RT since 2 gets readily incorporated into a growing DNA strand even in the presence of unmodified TTP.

Acknowledgements

Financial support by the DFG, Volkswagen Foundation, Roche Diagnostics and Fonds der Chemischen Industrie is gratefully acknowledged.

References and notes

- 1. De Clercq, E. J. Clin. Virol. 2004, 30, 115-133.
- Sugimoto, I.; Shuto, S.; Mori, S.; Shigeta, S.; Matsuda, A. Bioorg. Med. Chem. Lett. 1998, 9, 385–388.
- Nomura, M.; Shuto, S.; Tanaka, M.; Sasaki, T.; Mori, S.; Shigeta, S.; Matsuda, A. J. Med. Chem. 1999, 42, 2901– 2908.
- 4. Kodama, E.; Kohgo, S.; Kitano, K.; Machida, H.; Gatanaga, H.; Shigeta, S.; Matsuoka, M.; Ohrui, H.; Mitsuya, H. *Antimicrob. Agents Chemother.* **2001**, *45*, 1539–1546.
- Siddiqui, M. A.; Hughes, S. H.; Boyer, P. L.; Mitsuya, H.; Van, Q. N.; George, C.; Sarafinanos, S. G.; Marquez, V. E. J. Med. Chem. 2004, 47, 5041–5048.
- Kovács, T.; Ötvös, L. Tetrahedron Lett. 1988, 29, 4525– 4528.
- Summerer, D.; Marx, A. Angew. Chem., Int. Ed. 2002, 41, 3620–3622.
- Chen, M. S.; Suttmann, R. T.; Papp, E.; Cannon, P. D.; McRoberts, M. J.; Bach, C.; Copeland, W. C.; Wang, T. S.-F. *Biochemistry* 1993, 32, 6002–6010.
- Marx, A.; Amacker, M.; Stucki, M.; Hübscher, U.; Bickle, T. A.; Giese, B. Nucleic Acids Res. 1998, 26, 4063–4067.
- Marx, A.; MacWilliams, M. P.; Bickle, T. A.; Schwitter, U.; Giese, B. J. Am. Chem. Soc. 1997, 119, 1131–1132.
- 11. Strerath, M.; Cramer, J.; Restle, T.; Marx, A. J. Am. Chem. Soc. 2002, 124, 11230–11231.
- Cramer, J.; Strerath, M.; Marx, A.; Restle, T. J. Biol. Chem. 2002, 277, 43593–43598.
- Summerer, D.; Marx, A. J. Am. Chem. Soc. 2002, 124, 910–911.
- 14. Huang, H.; Chopra, R.; Verdine, G. L.; Harrison, S. C. *Science* **1998**, *282*, 1669–1675.
- Ding, J.; Das, K.; Hsiou, Y.; Sarafianos, S. G.; Clark, A. D., Jr.; Jacobo-Molina, A.; Tantillo, C.; Hughes, S. H.; Arnold, E. J. Mol. Biol. 1998, 284, 1095–1111.
- Cases-González, C. E.; Menéndez-Arias, L. J. Virol. 2004, 78, 1012–1019, and references cited therein.